Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).
Google Scholar
Grumbling, E. & Horowitz, M. (eds) Quantum Computing: Progress and Prospects (National Academies Press, 2019).
Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020).
Google Scholar
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information 10th anniversary edn (Cambridge Univ. Press, 2010).
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).
Google Scholar
Montanaro, A. Quantum algorithms: an overview. npj Quantum Inf. 2, 15023 (2016).
Google Scholar
Aramon, M. et al. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7, 48 (2019).
Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 574, 461–462 (2019).
Google Scholar
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019). This article reports the demonstration of a quantum advantage with verification for a mathematical problem designed to test the quantum hardware.
Google Scholar
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Google Scholar
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Google Scholar
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Google Scholar
Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).
Google Scholar
Quintanilla, J. & Hooley, C. The strong-correlations puzzle. Phys. World 22, 32–37 (2009).
Google Scholar
Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).
Google Scholar
Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996). This article discusses in detail how digital quantum simulation could be implemented on quantum computers, and forms the basis for the fault-tolerant quantum simulation protocols discussed here.
Google Scholar
Roffe, J. Quantum error correction: an introductory guide. Contemp. Phys. 60, 226–245 (2019).
Google Scholar
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Google Scholar
Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).
Google Scholar
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Google Scholar
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Google Scholar
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002). This article demonstrates the first analogue quantum simulation of a strongly correlated quantum system, making use of cold atoms in optical lattices.
Google Scholar
Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
Google Scholar
Hartmann, M. J. Quantum simulation with interacting photons. J. Opt. 18, 104005 (2016).
Google Scholar
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Google Scholar
Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).
Google Scholar
Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).
Google Scholar
White, A. G. Photonic quantum simulation. In 2014 OptoElectronics and Communication Conference and Australian Conference on Optical Fibre Technology 660–661 (Optica Publishing Group, 2014).
Choi, J.-y et al. Exploring the many-body localization transition in two dimensions. Science 352, 1547–1552 (2016). This paper provides an important recent demonstration of the use of analogue quantum simulators with cold atoms in optical lattices to explore the dynamics of interacting particles in a disordered system, which is intractable to classical computation.
Google Scholar
Chiu, C. S. et al. String patterns in the doped Hubbard model. Science 365, 251–256 (2019).
Google Scholar
Koepsell, J. et al. Imaging magnetic polarons in the doped Fermi–Hubbard model. Nature 572, 358–362 (2019).
Google Scholar
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science374, 1237–1241 (2021).
Bluvstein, D. et al. Controlling quantum many-body dynamics in driven Rydberg atom arrays. Science 371, 1355–1359 (2021). This article demonstrates the state of the art for observing many-body dynamics in an analogue quantum simulator with neutral atom arrays and Rydberg excitations.
Google Scholar
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021). This article demonstrates analogue quantum simulation of dynamics with 196 spins using neutral atoms in tweezer arrays.
Google Scholar
Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).
Google Scholar
Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).
Google Scholar
Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).
Google Scholar
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Google Scholar
LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
Google Scholar
Bauer, B. et al. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech. 2011, P05001 (2011).
Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).
Werner, P., Oka, T. & Millis, A. J. Diagrammatic Monte Carlo simulation of nonequilibrium systems. Phys. Rev. B 79, 035320 (2009).
Google Scholar
Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).
Google Scholar
Eisert, J. Entangling power and quantum circuit complexity. Phys. Rev. Lett.127, 020501 (2021).
Swingle, B., Bentsen, G., Schleier-Smith, M. & Hayden, P. Measuring the scrambling of quantum information. Phys. Rev. A 94, 040302 (2016).
Google Scholar
Hatano, N. & Suzuki, M. in Quantum Annealing and Other Optimization Methods (eds Das, A. & Chakrabarti, B. K.) 37–68 (Lecture Notes in Physics, Springer, 2005).
Childs, A. M., Su, Y., Tran, M. C., Wiebe, N. & Zhu, S. Theory of Trotter error with commutator scaling. Phys. Rev. X 11, 011020 (2021).
Google Scholar
Heyl, M., Hauke, P. & Zoller, P. Quantum localization bounds trotter errors in digital quantum simulation. Sci. Adv. 5, eaau8342 (2019).
Google Scholar
Wecker, D., Bauer, B., Clark, B. K., Hastings, M. B. & Troyer, M. Gate-count estimates for performing quantum chemistry on small quantum computers. Phys. Rev. A 90, 022305 (2014).
Google Scholar
Wecker, D. et al. Solving strongly correlated electron models on a quantum computer. Phys. Rev. A 92, 062318 (2015).
Google Scholar
Kliesch, M., Gogolin, C. & Eisert, J. Lieb–Robinson Bounds and the Simulation of Time-Evolution of Local Observables in Lattice Systems 301–318 (Springer, 2014).
Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Google Scholar
Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).
Google Scholar
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004). This article introduced classical simulation of one-dimensional many-body systems using matrix product states, which provide the present state of the art in classical simulation of quench dynamics in strongly interacting systems.
Google Scholar
Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).
Google Scholar
Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).
Google Scholar
Kempe, J., Kitaev, A. & Regev, O. The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2006).
Google Scholar
Poggi, P. M., Lysne, N. K., Kuper, K. W., Deutsch, I. H. & Jessen, P. S. Quantifying the sensitivity to errors in analog quantum simulation. PRX Quantum 1, 020308 (2020).
Google Scholar
Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011).
Google Scholar
Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).
Google Scholar
Berry, D. W., Childs, A. M., Cleve, R., Kothari, R. & Somma, R. D. Simulating Hamiltonian dynamics with a truncated taylor series. Phys. Rev. Lett. 114, 090502 (2015).
Google Scholar
Haah, J., Hastings, M. B., Kothari, R. & Low, G. H. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM J. Comput. FOCS18-250-FOCS18-284 (2021).
Aharonov, D. & Ta-Shma, A. Adiabatic quantum state generation and statistical zero knowledge. In Proc. Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’03 20–29 (Association for Computing Machinery, 2003).
Low, G. H. & Chuang, I. L. Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).
Google Scholar
Flannigan, S. et al. Propagation of errors and quantitative quantum simulation with quantum advantage. Preprint at https://arxiv.org/abs/2204.13644 (2022).
Morgado, M. & Whitlock, S. Quantum simulation and computing with rydberg-interacting qubits. AVS Quantum Sci. 3, 023501 (2021).
Google Scholar
Poulin, D. et al. The Trotter step size required for accurate quantum simulation of quantum chemistry. Quantum Inf. Comput. 15, 361–384 (2015).
Google Scholar
Sornborger, A. T. & Stewart, E. D. Higher-order methods for simulations on quantum computers. Phys. Rev. A 60, 1956–1965 (1999).
Google Scholar
Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. Quantum Inf. Comput. 15, 1–21 (2015).
Google Scholar
Bocharov, A., Roetteler, M. & Svore, K. M. Efficient synthesis of universal repeat-until-success quantum circuits. Phys. Rev. Lett. 114, 080502 (2015).
Google Scholar
Gidney, C. Halving the cost of quantum addition. Quantum 2, 74 (2018).
Google Scholar
Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).
Google Scholar
Eisert, J. et al. Quantum certification and benchmarking. Nat. Rev. Phys. 2, 382–390 (2020).
Google Scholar
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Google Scholar
Bairey, E., Arad, I. & Lindner, N. H. Learning a local Hamiltonian from local measurements. Phys. Rev. Lett. 122, 020504 (2019).
Google Scholar
Evans, T. J., Harper, R. & Flammia, S. T. Scalable Bayesian Hamiltonian learning. Preprint at https://arxiv.org/abs/1912.07636 (2019).
Li, Z., Zou, L. & Hsieh, T. H. Hamiltonian tomography via quantum quench. Phys. Rev. Lett. 124, 160502 (2020).
Google Scholar
Valenti, A., van Nieuwenburg, E., Huber, S. & Greplova, E. Hamiltonian learning for quantum error correction. Phys. Rev. Res. 1, 033092 (2019).
Google Scholar
Wang, J. et al. Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017).
Google Scholar
Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).
Google Scholar
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Google Scholar
Turner, C. J., Michailidis, A. A., Abanin, D. A., Serbyn, M. & Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 14, 745–749 (2018).
Google Scholar
Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).
Google Scholar
Bentsen, G. et al. Treelike interactions and fast scrambling with cold atoms. Phys. Rev. Lett. 123, 130601 (2019).
Google Scholar
Periwal, A. et al. Programmable interactions and emergent geometry in an atomic array. Nature 600, 630–635 (2021).
Argüello-Luengo, J., González-Tudela, A., Shi, T., Zoller, P. & Cirac, J. I. Analogue quantum chemistry simulation. Nature 574, 215–218 (2019).
Google Scholar
Cubitt, T., Montanaro, A. & Piddock, S. Universal quantum Hamiltonians. Proc. Natl Acad. Sci. USA 115, 9497–9502 (2018).
Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).
Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).
Google Scholar
Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).
Bassman, L. et al. Simulating quantum materials with digital quantum computers. Quant. Sci. Technol. 6, 043002 (2021).
Ma, H., Govoni, M. & Galli, G. Quantum simulations of materials on near-term quantum computers. npj Comput. Mater. 6, 85 (2020).
Google Scholar
Rieger, H. in Quantum Annealing and Other Optimization Methods (eds Das, A. & Chakrabarti, B. K.) 299–324 (Lecture Notes in Physics, Springer, 2005).
Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).
Google Scholar
Lamata, L., Parra-Rodriguez, A., Sanz, M. & Solano, E. Digital-analog quantum simulations with superconducting circuits. Adv. Phys. X 3, 1457981 (2018).
Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).
Google Scholar
Kokail, C. et al. Self-verifying variational quantum simulation of lattice models. Nature 569, 355–360 (2019). This article reports the demonstration of an analogue quantum simulator being used for variational quantum simulation, demonstrating a self-verified solution to a model from high-energy physics.
Google Scholar
Babukhin, D. V., Zhukov, A. A. & Pogosov, W. V. Hybrid digital-analog simulation of many-body dynamics with superconducting qubits. Phys. Rev. A 101, 052337 (2020).
Google Scholar
Arrazola, I., Pedernales, J. S., Lamata, L. & Solano, E. Digital-analog quantum simulation of spin models in trapped ions. Sci. Rep. 6, 30534 (2016).
Google Scholar
Kokail, C., van Bijnen, R., Elben, A., Vermersch, B. & Zoller, P. Entanglement Hamiltonian tomography in quantum simulation. Nat. Phys. 17, 936–942 (2021).
Joshi, M. K. et al. Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions. Phys. Rev. Lett. 124, 240505 (2020).
Google Scholar
Henriet, L. et al. Quantum computing with neutral atoms. Quantum 4, 327 (2020).
Google Scholar
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).
Google Scholar
Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
Google Scholar
Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).
Google Scholar
Schäfer, F., Fukuhara, T., Sugawa, S., Takasu, Y. & Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2, 411–425 (2020).
Google Scholar
The Hubbard model at half a century. Nat. Phys. 9, 523 (2013).
Essler, F. H. L., Frahm, H., Göhmann, F., Klümper, A. & Korepin, V. E. The One-Dimensional Hubbard Model (Cambridge Univ. Press, 2005).
Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).
Google Scholar
von Burg, V. et al. Quantum computing enhanced computational catalysis. Phys. Rev. Res. 3, 033055 (2021).
Google Scholar
Bauer, B., Bravyi, S., Motta, M. & Chan, G. K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).
Google Scholar